
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A RELAY-ROVER DIFFERENTIAL GAME 

 

 

THESIS 

 

 

Youngdong Choi, Captain, ROKAF 

 

AFIT/GAE/ENY/11-J06 

 

DEPARTMENT OF THE AIR FORCE 
AIR UNIVERSITY 

AIR FORCE INSTITUTE OF TECHNOLOGY 

Wright-Patterson Air Force Base, Ohio 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 

 

 



 

 

 

 

 

 

 

 

 

The views expressed in this thesis are those of the author and do not reflect the official 

policy or position of the United States Air Force, Department of Defense, or the United 

States Government.  This material is declared a work of the U.S. Government and is not 

subject to copyright protection in the United States. 



 

AFIT/GAE/ENY/11-J06 

 

A RELAY-ROVER DIFFERENTIAL GAME 

 

 

THESIS 

 

Presented to the Faculty 

Department of Aeronautics and Astronautics 

Graduate School of Engineering and Management 

Air Force Institute of Technology 

Air University 

Air Education and Training Command 

In Partial Fulfillment of the Requirements for the 

Degree of Master of Science in Aeronautical Engineering 

 

 

Youngdong Choi, BS 

Captain, ROKAF 

 

June 2011 

 

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED 





iv 

AFIT/GAE/ENY/11-J06 

 

Abstract 

             Guidance laws are developed to optimally position a relay Micro-UAV (MAV) to 

provide an operator at the base with real-time Intelligence, Surveillance, and 

Reconnaissance (ISR) by relaying communication and video signals when the rover 

MAV performing the ISR mission is out of radio contact range with the base. The ISR 

system is comprised of two MAVs, the Relay and the Rover, and a Base. The Relay 

strives to minimize the radio frequency (RF) power required for maintaining 

communications, while the Rover performs the ISR mission, which may maximize the 

required RF power. The optimal control of the Relay MAV entails the solution of a 

differential game. Suboptimal solutions are also analyzed to gain insight into the solution 

of the differential game. One suboptimal approach investigated envisages the Rover to 

momentarily remain stationary and solves for the optimal path for the Relay to minimize 

the RF power requirement during the planning horizon: the one – sided optimal control 

problem is solved in closed form. Another suboptimal approach is based upon the 

geometry of the system: The midpoint between the Rover and the Base is the location 

which minimizes the RF power required, so the Relay heads toward that point—assuming 

that the Rover is stationary. At the same time, to maximize the required RF power, the 

Rover runs away from the Relay. In this work the differential game is fully analyzed. The 

geometry based suboptimal solution is shown to be the optimal solution in the endgame. 

Isaac‘s method is then applied to obtain the optimal trajectories in the differential game. 
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A RELAY-ROVER DIFFERENTIAL GAME 

 

I.   Introduction 

I.1.   Background 

Unmanned Aerial Vehicles (UAVs) are prevalent in current military operations. 

UAVs vary in size and mission. While some UAVs are the same size as aircraft, others 

are man-portable and can be carried in a backpack. These man-portable Micro-UAVs 

(MAVs) utilized by small tactical units are not supported by satellite communications and 

use radio frequency (RF) modems. High frequency radio communications are range 

limited. The MAVs considered in this paper are utilized for Intelligence, Surveillance and 

Reconnaissance (ISR) and will therefore be referred to as ISR MAVs or as Rovers [1]. 

The Base may lose communication (and controllability) with deployed ISR 

MAVs/Rovers if the Rovers stray far away. In this thesis guidance laws are developed to 

optimally position a Relay MAV to provide the operator at the Base with real-time ISR 

by relaying communication and sensor data while allowing for extended range Rover 

operations. The Relay-Rover interaction is modeled as a differential game whose solution 

yields the optimal Relay strategy. 

I.2.   Research Objectives 

The ISR mission is considered where a rover MAV is controlled by an operator 

and tasked to fly to locations where targets need to be inspected. Since the rover MAV 

might get out of radio communication range with the base station where the operator is 



2 

located, it is envisaged that a relay MAV will be interposed between the rover and the 

base station, so that connectivity will be maintained.  

In order to reduce the workload of the operator, the relay MAV will be 

autonomous. In other words, a guidance law for the relay MAV will be developed such 

that the relay MAV will automatically position itself between the rover and the base, with 

a view to reducing the RF power required for communications – this, despite the 

maneuvers of the rover. The worst case scenario is considered, where the rover is ―giving 

a hard time‖ to the relay MAV. This calls for a min–max optimal control formulation, a 

differential game formulation. 
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II.   Literature Review 

 

To better appreciate the nature of the thesis research, it is necessary to first 

discuss previous relevant works. Recent studies have produced two general designs for a 

reliable and robust communication network utilizing mobile communication nodes. The first 

design consists of one or more mobile communication nodes which form a single chain to 

relay information between the source and the destination. This is referred to as a ―single-flow 

network.‖ Many designs for single-flow networks use a fixed source and fixed destination, 

though they do not discount the possibility of a mobile destination (Dixon and Frew, 2007; 

Goldenberg et al., 2004). The second design consists of multiple mobile communication 

nodes which form a ―mesh-like network‖. This configuration adds fault-tolerance for a more 

robust network (Basu and Redi, 2004; Floreano et al., 2007). However, a ―mesh-like 

network‖ would be ill suited for the envisioned ISR and engagement system due to desired 

unit covertness while engaging a high value target. In this respect, Brown et al. have 

developed the Ad-hoc UAV Ground Network (AUGNet) test bed, showing the practicality of 

UAV-based mobile communication nodes using IEEE 802.11b wireless routers (Brown et al., 

2004). The proposed ISR and engagement system may have a network design similar to 

AUGNet but the Relay must still have an optimal mobility control law in order optimize 

network communications.  

Dixon and Frew have utilized the AUGNet system with an extremum seeking 

controller to study cooperative electronic chaining while maximizing the signal-to-noise ratio 

between the nodes of the multi-hop network (Dixon and Frew, 2007). Goldenberg et al. have 

shown that communication nodes should be evenly spaced on the line between the source and 
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destination in order to minimize the energy cost of communicating between the two 

(Goldenberg et al., 2004).  

This line of research was initiated by Lt. John H. Hansen in 2008, in his thesis 

‗Optimal Guidance of A Relay MAV for ISR Support Beyond Line-Of-Sight‘[7]. In this 

thesis, the basic system definition from his work will be introduced again and used for 

further research. Additional work, including limited experimentation and hardware 

testing was done by the students of Dr. David R. Jacques.  

Building on these foundations, in this thesis the underlying differential game 

theory is further developed.  

II.1.   System Definition 

It is assumed that the rElay (E) MAV is cognizant of the rOver‘s (O) 

instantaneous position and, obviously, own ship position. As far as the RF power 

requirements are concerned, this is determined by their distance from the Base (B) and 

the rOver-rElay separation. Thus, the state is the distance rE of the rElay from the Base, 

the distance rO of the rOver to the Base, and the angle  included between the radials 

from the Base to the rElay and the rOver. This angle is measured clockwise. The MAVs 

have simple motion. The control for each MAV is its relative heading angle measured 

clock-wise from its radial from the Base. Figure 1 provides a visualization of the 

kinematics. The differential equations of motion are 

 

0

0

1 1
0

cos                       ,  (0)                

cos                       ,  (0)                

sin sin  ,  (0) ,  0
O E

E E E E

O O O O
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T is the planning horizon utilized by the control algorithm. The cost functional is 

indicative of the RF power required and is the time averaged sum of the squares of the 

distance between the rElay and the rOver and between the rElay and the Base: 

 2 2

0
( ) ( )

T

EO t BE t dt y  

B

E

O

VE







VO

rE

rO

x

y

 

Figure 1: Schematic of Relay System 

The points E, B and O in 2  represent the positions of the rElay, Base and rOver 

respectively. These three points form a triangle which can be utilized to calculate the 

distance EO  by the law of cosines. 

2 2 2( ) 2 cosE O E OEO t r r r r     

Hence the cost functional is 
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  2 2

0
2 2 cos

T

E O E Or r r r dt  y  (2) 

The objective is to minimize the average RF power required for maintaining 

communications. The control available to accomplish this task is limited to setting the 

course angle  of the rElay, while the rOver performs the ISR mission: in a worst case 

scenario, one might assume that the rOver is working to maximize the cost functional. 

The optimization problem is then a differential game [2] where the rElay‘s control is its 

relative heading  and the rOver‘s control is its relative heading . 

The system is analyzed by first non-dimensionalizing the states and the 

parameters. The velocities are scaled by the velocity of the rElay (VE), yielding a non-

dimensional speed ratio . The distances are scaled by d, where d is a characteristic 

length, say 
Ed V T . Set : ,  : ,  t : ,  T :OE E E

E O

rr V V
r r t T

d d d d
       and the speed ratio 

O

E

V

V
  . Using these non-dimensional variables and parameters, the two sided 

optimization problem now becomes 

 

 

0

2 2

0

1 1
0

min max 2 2 cos
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cos                      ,  (0)
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O E
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 (3) 

The problem parameters are the speed ratio 0   and the planning horizon 0T  . 
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Since the optimal control problem only makes sense if the rOver is closer to the 

rElay than to the Base (B), the following must hold.  

                                                             
2 cosE Or r  .                                                        

Thus, since the problem is symmetric about the 0  axis, the state space is  

 , , 0 , 0 2 cos
2

E O E Or r r r


  
 

    
 

 

To solve the differential game, the Hamiltonian is introduced in eq. (4), 

  2 2 1 12 2 cos cos cos sin sin
E O O EE O E O r r r r

r r r r                 H  (4) 

where ,   and 
E Or r     are the system co-states. 

According to the Pontryagin Maximum Principle (PMP) [3], the differential 

equations for the co-states are 

 

2
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sin
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 (5) 

and the optimality condition is given by max min

H , namely 
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or, 
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* *

2 2 2 2 2 2
  sin , cos E
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The second-order sufficiency condition for  is 

2
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and inserting the expression for * from (7) yields 
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Similarly, 
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and inserting the expression for * from (7) yields 
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OO rr
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 (9) 

The expressions for * and * given in Equations (7) and (8) can also be used to 

rewrite the state and co-state equations only in terms of the states and co-states. A 

standard, albeit nonlinear, Two-Point Boundary Value Problem (TPBVP) on the interval t 

= [0, T] is obtained: 
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O

r

r O E r

O r O

E O

T

r r T
r r

r r T t T







 





  

 

  




   


   





















 (10) 

Note: if 0,T   the costate ( ) 0 0 t<Tt    ; also 
2 2 2 0,
Er Er     

          
2 2 2 0 0 t<T.
Or Or       
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III.   Methodology  

III.1.   The End-Game  

At time t=T where the co-states vanish, and since the control variables do not 

explicitly feature in the cost functional, it is impossible to calculate the terminal controls 

by applying the PMP and maximizing and minimizing  the Hamiltonian (4); obviously, 

equations (10) don‘t apply because 
2 2 2 0
E

r E
r


   . The end game requires special 

attention. 

Since the end state is free - that‘s why the co-states vanish at t=T – the rElay‘s 

and rOver‘s optimal strategies at t=T are myopic. Thus, from first principles, the rElay 

would want the integrand in the cost functional  

2 2( , , ) 2 2 cosE O E O E OL r r r r r r   
 

to be minimized. Similarly, the rOver would want the integrand in the cost functional to 

be maximized. However the control variables   and  do not directly feature in L. 

Hence the rElay minimizes and the rOver maximizes the temporal derivative of L, 

evaluated at t=T: 

    

1 1
2 2 cos cos cos cos cos  cos sin sin sin

        = 2 2 cos cos sin  sin cos cos sin sin

E O O E E O

O E

E O O O E E

d
L r r r r r r

dt r r

r r r r r r

           

        

  
       

  

        

The rElay and rOver solve the respective static optimization problems 

                                      

 min 2 cos cos sin  sinE O Or r r


      

                              

(11) 
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and

 

                                      

 max cos cos sin sinO E Er r r


      

                                

(12) 

Concerning eq. (11): minimizing in   the derivative of the integrand at time t=T yields 

the rElay‘s optimal terminal control 

 

*

2 2

cos 2
cos( ( ))

4 4 cos

T T

T T T T

O T E

E O E O T

r r
T

r r r r









 
,  *

2 2

sin
sin( ( ))

4 4 cos

T

T T T T

O T

E O E O T

r
T

r r r r







 
, 

provided that 
TEr ,

TOr  and 
T  are s.t. the following is not the case: 

1

2T TE Or r  and 0.T   

Here,  , ,
T TE O Tr r   denote the terminal state at time t=T. 

When 0,T   eq. (11) yields  

*

1
0   if   r

2
( )

1
   if   r  

2

T T

T T

E O

E O

r

T

r








 
 


 

An inspection of Fig. 2 tells us that in the end game, at time t=T, the rElay heads 

toward the midpoint M of the segment .BO  
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Figure 2: End Game 

Concerning eq. (12), maximizing in   the derivative of the integrand at time t=T yields 

the rOver optimal terminal control 

*

2 2

cos
cos( ( ))

2 cos

T T

T T T T

O E T

E O E O T

r r
T

r r r r









 
,  *

2 2

sin
sin( ( ))

2 cos

T

T T T T

E T

E O E O T

r
T

r r r r







 
, 

provided that 
TEr ,

TOr  and 
T  are s.t. the following is not the case: 

T TO Er r  and 0T  . 

When 0,T   eq. (12) yields  

*
0   if   r

( )
  if   r  

T T

T T

O E

O E

r
T

r
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An inspection of Fig. 2 tells us that in the end game, at time t=T, the rOver runs 

away from the rElay. 

III.2.   Special Case – Optimal Control Problem 

We are interested in the solution of the zero-sum differential game which, loosely 

speaking, is a two-sided optimal control problem. When the rOver is stationary the speed 

ratio parameter 0  , and the rElay is faced with a simpler optimal control problem. 

Subscribing to Polya‘s [4] dictum: ―If you cannot solve the problem on hand, there surely 

is a simplified version of the problem which you also don‘t know how to solve – solve 

that problem first‖, we consider the case where the rOver is stationary and we first obtain 

the closed-form solution of the optimal control problem. 

The optimal control problem considered is  

 

0

2

0

0

min cos

. .  

cos  ,  (0)

sin  ,  (0) ,  0E

E

T

E E O

E E E E

V

r

r r r dt

s t

r V r r

t T






   





 

    



 

This is equivalent to setting α=0 in the differential game (3) the parameter. 

Without loss of generality we use the characteristic length 
Od r , that is, using non 

dimensional variables, the rOver is stationary at 
Or =1 and, the optimal control problem is  
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0

2

0

1

min cos

. . 

cos  ,  (0)

sin  ,  (0) ,  0oE

T

E E

E E E

r

r r dt

s t

r r r

t T






   



 

    



 

The state space is the half disc of unit radius centered at (1,0), 

                                  ( , ) 0 ,  0 2cos
2

E Er r


  
 

    
 

 

The control 0     and the problem parameter is T   E

O

V

r
T T  

III.2.1.   Analysis 

In the optimal control problem the Hamiltonian 

2 1cos cos sin
E EE E r r

r r        H  

Applying the Pontryagin Maximum Principle (PMP) we obtain 

*

2 2 2

*

2 2 2

  sin

   cos  ,

E

E

E

r E

E r

r E

r

r

r










 




 

 





 

provided the co-states   and 
Er

  don‘t vanish. 

The co-states‘ differential equations are 

2

sin
2 cos   ,  ( ) 0

sin  ,                          ( ) 0

E Er E r

E

E

r T
r

r T
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The TPBVP for the optimal control problem is 

02 2 2

0
2 2 2

2

2 2 2 2

                              ,  (0)

                            ,  (0)

2 cos      ,  ( ) 0

sin                             

E

E

E

E E

E

r E

E E E

r E

E r E

r E r

E r E

E

r
r r r

r

r r

r T

r r

r















 


  

 


  

 

 

 



 



   



      ,  ( ) 0,  0T t T

   

    

















                            (13)              

                            

 

Note: if 0T  , the costate ( ) 0 0 t T ;t     also,
2 2 2 0 0 t T .

Er Er        

III.2.2.   The End-Game in Optimal Control Problem 

As in the differential game at time t=T where the co-states vanish, and since the 

control variable   does not explicitly feature in the cost functional, it is impossible to 

calculate the terminal control by applying the PMP and maximizing the Hamiltonian; 

obviously, equations (13) don‘t apply because 
2 2 2 0
E

r E
r


   . The end game requires 

special attention. 

Since the end state is free - that‘s why the co-states vanish at t=T - the rElay‘s 

optimal strategy at t=T is myopic. Thus, from first principles it is clear that the rElay 

would want the integrand in the cost functional, 

2( , ) cosE E EL r r r    



16 

to be minimized. However the control variable   does not feature in L. Hence the rElay 

minimizes the temporal derivative of L, evaluated at t=T. 

 

2 cos cos cos sin sin

        = 2 cos cos sin sin

E

E

d
L r

dt

r

    

   

  

 

 

Minimizing in 

 

the derivative of the integrand at time t=T yields 

                              

  

  

*

2 2

*

2

cos 2
    cos

4 1 4 cos

sin
    sin ,

4 1 4 cos

    

T

T T

T T

T E

E E T

T

E E T

r
T

r r

T
r r














 


 

      









                       

(14)  

                                    

Here  , ,
T TE O Tr r   is the state at time t=T. 

Note that as in the differential game, when 0T  , the optimal terminal rElay control is 

 

 

                                            

 *

1
0     0

2
 

1
     2

2

E

E

r

T

r






  

 
   
                                        

(15) 

As in the differential game, an inspection of Fig. 2 and eqs. (14) and (15) tell us 

that in the end game, at time t=T, the rElay heads toward the mid-point M=(
1

2
 ,0).  

The analysis yielding the optimal terminal rElay strategy (14)  and (15)  applies, provided 

that the end state ( , )
TE Tr   is not  
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1
0,  

2TT Er  
 

III.2.3.   Retrograde Integration: t ≤ T 

At time t=T the co-states vanish and we cannot use eqs. (13); also, 

2 2 2 0
Er Er    at t = T. At the terminal time t = T where, the maximization of H does 

not yield the optimal control according to the PMP, we must use eqs. (14) and (15) 

derived from first principles. Thus, in the end game at the terminal time t=T, the specified 

rElay control in eqs. (13), is replaced by the rElay control in the end game, namely, eq. 

(14). Thus, at time t=T eqs. (13) are replaced by 

                  

*

2

*

2

*

2

cos 2
cos( ( ))  , ( )

4 1 4 cos

sin1 1
sin( ( ))  , ( )

4 1 4 cos

sin( ( ))
2 cos 2 cos   ,  ( ) 0

sin  , ( ) 0

T

T

T T

T T
T T

E T T E

T

T

T E

E E ET

E E T

T
T

T
E E E E T

r E T E r
T

E

E T
T

r
r T r T r

r r

T T
r r r r

T
r r T

r

r T



 







   



 
   

  


  

 

    
 

     

 















    

(16) 

We can now kick start the backward integration at t = T, from any end state in the 

state space, except the special end state 
1

,  0,
2TE Tr   where the terminal control 

cannot be calculated.  Also recall that the costate ( ) 0t  0 t T   , provided that 
T

>0. We are particularly interested in the trajectories which, under optimal play, terminate 

at the midpoint M of the segment BO  where 
1

( ) ,  ( ) 0
2

Er T T   - referred to as the 
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―sweet spot‖. When the end point is the ―sweet spot‖ 0T  , 
1

2TEr   we cannot obtain 

the optimal rElay control; the terminal optimal control  * T  cannot be determined from 

an examination of the equation  

d
L

dt
  2 cos cos sin sinEr       

= 0 cos 0 sin     

The same applies when higher derivatives of L are considered. Eq. (14) does not 

apply and the retrograde integration of eqs. (13) cannot be ―started‖ at the special ―sweet 

spot‖ terminal state 
1

,  0
2TE Tr    using eqs. (16). Yet, as we shall see – see, e.g., 

Figure 4 in the sequel - it turns out that all the optimal trajectories radiate ―out‖ of the 

―sweet spot‖ M where 
1

,  0 .
2

Er   In other words, for all initial states ( ,  
OE Or  ) in the 

state space there exists a planning horizon 
1

( ,  ) s.t. ( ( ,  ))
2O OE O E E OT r r T r     and 

 ( ,  )
OE OT r  =0. 

Furthermore, given the initial state ( ,  )
OE Or  , if the planning horizon 

( ,  )
OE OT T r  , the optimal trajectory is s.t. the ―sweet spot‖ 

1
,  =0

2
Er   is reached at 

time ( ,  )
OE OT r  , following which, during the time interval ( ,  )

OE OT r t T   , chattering 

control will be applied and the rElay will stay put at the ― sweet spot‖. Hence we back off 

and instead ―start‖ the retrograde integration from a family of end points located on the 
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circumference of a small semicircle of radius 0 1  centered at the ―sweet spot‖, 

namely, the mid-point M =
1

,0
2

 
 
 

 of the segment OB  - as shown in Fig. 3.  

1

2
1 2B

TE




M
O

( )T 

( )
TEr 

 

Figure 3: End Points Manifold 
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Figure 4: The Optimal Flow Field 

The characteristics are integrated in retrograde fashion ―starting‖ out at end-points 

( , )
TT E TE r  , where 

                        

2

2 2 21 1
sin cos 1 4 cos 4  ,

2 2

and

sin
,   0

1
cos

2

TE

T

r

Atan

      

 
  

 

 
      

 

 
 

   
 
 















                

(17) 

One proceeds as follows. One ―starts out‖ from a point 
TE  on the terminal semicircular 

manifold shown in Fig. 3. Eqs. (17) are inserted into the R.H.S. of eqs. (16) where the 

optimal control in the end game is used and equations (16) are then used to step back one 



21 

time increment to time T T . From that point on, having gotten away from the end 

state, and, in particular, the critical end state 
1

,  0
2TE Tr   , eqs. (13) where the optimal 

control specified by the PMP is used are integrated in retrograde fashion   T- T t 0    . 

The integration is stopped when the condition 2cosEr   is violated, that is, the 

boundary of the state space is reached. The end points manifold is the thick line 

semicircle of radius  centered at 
1

,  0
2

 
 
 

, as shown in Fig. 3. The family of end points 

TE  is parameterized by the angle , 0    . 

The rElay‘s optimal strategy in the end game is in fact the optimal strategy 

throughout, as proven in Section 3.4 in the sequel. Hence the optimal trajectories leading 

into the semicircular terminal manifold are straight lines. Also note that if 0T  , that is, 

0   or   , the rElay stays on the horizontal line BO – the symmetry axis of the disc 

shaped state space – and heads toward the mid-point M of the segment OB .  

Consequently, the optimal flow field consists of straight line trajectories which 

converge at the ―sweet spot‖ M. This results in the optimal flow field shown in Fig. 4: the 

optimal state feedback strategy is  

*

2

cos 2
cos( ( ,  )) ,

4 1 4 cos

E
E

E E

r
r

r r


 






 
 

*

2

sin
sin( ( ,  ))

4 1 4 cos
E

E E

r
r r


 




 
 

and the ensuing optimal straight line trajectories, all converge to the ―sweet spot‖ M=

1
,  0

2

 
 
 

. 
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III.3.   Analytic Solution of the Optimal Control Problem 

In the optimal control problem there are just two state variables, 
Er  and .  It is 

therefore instructive to use Cartesian coordinates (x, y) as shown below. 

x

y

B M O

E


1

1

2

1

2

 

Figure 5: Trajectory in Cartesian Plane 

 

The dynamics now are 

0

0

sin , (0)

cos ,  (0) ,  0 ,

x x x

y y y t T





 

    
 

and the cost functional is 

 2 2

0
2

T

x y x dt  y
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The state space is the set  

  2 2, 2 0 ,S x y x y x   
 

namely, a disc of radius 1 centered at (1,0). 

The Hamiltonian is 

2 22 2 2 sin cos  x yx x y        H
 

The  Hamiltonian is maximized on ,  which yields the optimal controls
 

* *

2 2 2 2
sin ,  cos

yx

x y x y


 

   
  

                                  (18) 

Hence, we must solve the TPBVP 

0
2 2

,  (0)x

x y

x x x


 
 

                                           (19) 

 
0

2 2
,  (0)

y

x y

y y y


 
 

                                          (20) 

4 2,  ( ) 0x xx T   
                                            (21) 

4 ,  ( ) 0y yy T  
                                              (22) 

III.3.1.   The End Game in the Cartesian Plane 

The controls don‘t directly feature in the cost functional. Hence we minimize the 

derivative of the integrand in the cost functional: 

 2 2 min
d

x y x
dt 

    

  

2 sin 2 cos sin  minx y
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1
sin cos  min

2
x y


 

 
   

 
 

  

     * *

2 2 2 2

1

2sin ,  cos
1 1

4 4

x
y

T T

x y x x y x

 


 

     
            (23) 

Have obtained the optimal controls in the end game. 

 In the end game E heads toward the BO  midpoint M. 

Proposition A    The following holds.  

 

 
. ,  0 t T.

x

y

t
const c

t




                                                

Proposition A   

*( ) . , 0 t Tt const     

  

*

0

*

0

( ) sin

( ) cos

x t x t

y t y t





  

  
 

  

*

04 4sin 2x x t      

*

04 4cosy y t     

  

    * 2

02 2 1 2sinx t x t t a       
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  * 2

04 2cosy t y t t b      

 where a and b are integration constants. 

Furthermore, Proposition A   

  * 2

0

* 2

0

2 1 sin
  0 t T

2 cos

x t t a
c

y t t b





   
   

  
 

  

   * * 2

0 0sin cos 2 1 2 0  0 t Tc t x y c t a bc              

  

*

0
*

0

tan ,

1

2 tan ,

A c

x

y

a
b

c





 







 

We conclude that the rElay heads in a straight line toward the midpoint M. 

Finally, given the initial state  0 0,  yx , we calculate 

2 2

max 0 0 0

1
.

4
T x y x     

Note   Since  max 0,x T   we calculate the constant 

  * 2

0 max max1 2 sina x T T     

  

 
*

* 2

0 max max*

cos
2 1 cos

sin
b x T T





     

Now 
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*

* 2 * 2

max 0 max max 0 max max*

*

max 0 0

cos
2 2 cos 2 1 cos

sin

1
             4 cot

2

y T y T T x T T

T y x


  





 
       

 

  
    

  

 

But  

0
*

0

1

2 tan

x

y




  

  

 max 0.y T 
 

and the ―transversality conditions‖    max max0,  0y yT T  
 
hold.  

 The optimal trajectories are straight lines. 

 

III.3.2.   Value Function 

The optimal trajectories are 

   

   

*

*

sin ,  

cos ,  , t T

x x x t x

y y y t y

  

   

   

     
 

and the (constant) optimal controls 

* *

2 2 2 2

1

2sin ,  cos
1 1

4 4

x
y

x y x x y x

 


 

     

 

Now  

     2 2 2 * * 2 2

2 2 2 2 2

1
2 sin cos

2

1
2

4

x y x x y x y x

x y x x y x
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Therefore, the value function is 

 

      

2 2 2 2 2

3 3 2 2 2 2 2 2

1
, , ; 2 2

4

1 1
              2

3 4

T

t
V t x y T x y x x y x d

T t x y x T t x y x T t

  
 

         
 

 
            

 


 

Hence, have obtained the explicit value function 

       

 

2 2 2 2 2 21 1
, , ; 2 ,

4 3

, ,  0T

V t x y T T t x y x x y x T t T Tt t

x y S t T

 
              

 

  

 

The domain of definition of the value function  , , ;V t x y T  is the set 

   
2

2 2 2 21
, 1 1,  

2
S x y x y x y T

   
        

    . 

shown in Fig. 6 
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Figure 6: The domain of definition of the value function 

In particular, 

   2 2 2 2 2

0 0 0 0 0 0 0 0 0 0

1 1
, ; 2 ,  ,

4 3
TV x y T T x y x x y x T T x y S

 
           

 
 

 

Note:  

When 
2 2

0 0 0

1

4
T x y x   

 ,
  2 2 2 2

0 0 0 0 0 0 0 0

2 1 1
,

3 2 4
x y x y x x y x

 
       

 
y

.

 

III.4.   Discussion 

This is an interesting optimal control problem: The end state is free and the 

control does not explicitly feature in the cost functional, which requires us to consider the 

end game. Furthermore, if the planning horizon T is long enough, all the optimal 
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trajectories in the state space will terminate at the ―sweet spot‖ 
1

,  0
2

Er   . At the 

same time, to solve the optimal control problem we employ the method of characteristics 

- also referred to as Isaacs method [2], which requires us to integrate the characteristics 

equations/state and co-state equations in a retrograde manner, "starting out" from an end 

state. But there is only one end state, the critical "sweet spot". Now, recall that the 

optimal control provided by the solution of the end game does not apply at the ―sweet 

spot‖ and one is at a loss of how to kickstart the backward integration. This indicates a 

strong singularity at this critical end state, the "sweet spot". 

Indeed the complete optimal flow field/solution "emanates" from the special 

sweet spot, and this has the appearance of a Big Bang type situation. It would appear that 

since a family of characteristics, and not just a single characteristic, emanates from the 

sweet spot, the solution of the characteristics equation is not unique, and Isaacs method is 

not applicable to the solution of the rElay optimal control problem. This difficulty was 

overcome by slightly backing off from the sweet spot. The sweet spot was replaced by 

the family of terminal states shown in Fig. 3, namely the small semicircle centered at the 

sweet spot and indicated by the thick line; the radius of the semicircle is 1.  

When ―starting‖ the integration from, say, point 
TE on the circumference of the 

semicircle, the first step in the retrograde integration entails the use of the optimal 

strategy (14) for the end game; the end states 
TE  on the circumference of the small semi-

circle are parameterized by the angle ,  0 .     This kicks off the integration, and 

from this point on, one uses the characteristics‘ eqs. (13). The integration is stopped when 
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the boundary of the state space is approached, where the condition 2 cosE Or r 
 
is 

violated.  

III.5.   Differential Game 

To solve the differential game we employ the method of characteristics, a.k.a., the 

method of Isaacs. The partial derivatives of the value function are related to the costates 

according to 

,  ,  
E E O Or r r rV V V          

Hence, in view of eqs. (3), (5),  (7) and (8),  the equations of the characteristics are 

2

2 2 2
2 cos 4 ,  ( ) 0

E E

E

r O E r

E r E

Vd
V r r V T

dt r V r V
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dt V r V

   


 

2 2
,  ( ) , 0O

T T

O

O r
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dt V r V

  


 

1

2 2 2 2

1
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E

T T

OO r O E r E

rV Vd
t T
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According to Isaac‘s method [2], the characteristic equations are integrated in 

retrograde fashion ―starting‖ out at ,  ,  .
T TE O Tr r  To this end set .T t   Thus 
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(24) 

Now, the first step in the retrograde integration of the equations of the 

characteristics requires us to use the controls from the end game. Thus, the first 

integration step is 

2 2 2 2

2 2
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sin sin

4 4 cos 2 cos
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Equations (25) are obtained from eqs. (24) by using therein the terminal optimal controls 

derived in Section 2.1.  

Since (0) 0,  (0) 0
E Or rV V   and (0) 0,V   the first step (25) is required and the 

integration of the equations of the characteristics (24) starts at time τ=∆T with the 

―initial‖ condition             ,  ,  ,  V , V ,  V .
E OE O r rr T r T T T T T       

The following holds. 

PROPOSITION  When the speed ratio 0 2  , the rElay can always reach the 

midpoint M, provided that the game horizon 
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Figure 7: Pursuit - Evasion 

From Fig. 7, the instantaneous distance EM is 
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Now yields the rElay pursuit strategy
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The rElay heads toward the midpoint M of the segment BO .

 

The motion of the midpoint M is exclusively controlled by the rOver and the rOver‘s 

evasion strategy is
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and therefore the time-to-go  
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In general, optimal trajectories do not terminate s.t. a configuration where B, E 

and O in Fig. 2 are collinear is achieved. If however the game horizon T is sufficiently 

long and the speed ratio parameters 0 2  , at some point in time a state s.t. 
1

2
E Or r  

and 0  will be reached under optimal control, after which the game is rectilinear and 

the trajectory arc is singular. – strictly speaking the rElay will reduce its speed to 
1

2
 and 

follow the rOver s.t.    
1

.
2

E Or t r t  Hence we are interested in the trajectories which 

―emanate‖ in retrograde fashion from  ―sweet spots‖ (
1

,  0
2

E Or r   ). 

It is however impossible to kick start the retrograde integration of the equation of 

the characteristics using eqs. (25) when starting out from a ―sweet spot‖. Therefore, 

similar to the optimal control problem, we "start out" from the family of "initial states" 

parameterized by ,  as shown in Fig. 3. Thus, in eqs. (25) 

2 2 21
( cos ) sin
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where 0 1.  In other words, in eqs. (25) 
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III.6.   Optimal Play 

In Fig. 8 optimal trajectories in the state space are shown. 

1max 1( ; )Or  
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2max 2( ; )E  

 

Figure 8: Optimal Relay Trajectories in the State Space 

The broken lines are rElay trajectories in the state space which terminate at 

1
TOr   and the full lines are their projection onto the half disc at 1.Or  Optimal 

trajectories which terminate at 1
TOr   are constructed. The retrograde integration of the 

equations of the characteristics yields    ; ,  ;E Or r     and  ; .  
max is determined 

by the condition       max max max; 2 ; cos ; ,E Or r         that is, the boundary of the 
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state space is reached, or,  max ; 0,     that is, the plane of symmetry of the state space 

is reached. To plot the trajectory in the state space, are calculated  
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III.6.1.   The Optimal Trajectories in the Realistic Space 

The retrograde integration of the equations of the characteristics yields the 

optimal trajectories       max,  , ,  0 .E Or r      
 
 

We have used a reduced state space  ,  ,  E Or r  and have obtained the trajectory and 

optimal controls‘ time histories in a rotating frame of reference. Specifically, the 

sequences ( ),  ( ),  ( ),  1,...,
k kE E O O kr r k T r r k T k T k N      are calculated, where 

max ;N
T





 21 sin
1 4 cos 4 ,  1,  tan .

12
cos

2

O O TE O O Or r r A
 

   

 

 
 

       
 
 

 

In addition, the optimal control sequences * *( ),k k T   * *( ),k k T    

k=0,...,N-1  are also calculated. To better visualize the optimal trajectories, they are 

plotted in the realistic plane. We proceed as follows. 

Set 

     ( ) : ,  O( ) : ,  k=0,...,N-1E k T E N k T k T O N k T         
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and 

     * * * *( ) : 1 ,  ( ) : 1 ,  k=0,...,N-1.k T N k T k T N k T              
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Figure 9: The Construction of Optimal Trajectories in The Realistic Space 

 

The origin of the realistic plane is at B and the x-axis of the realistic plane is aligned with 

the segment (0).BO  Thus, the coordinates of the rOver and rElay at time t=0 are 

           

    

0 ( 0 cos 0 ,  0 sin 0 )

0 0 ,  0

E E

O

E r r

O r
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cAt time t=0, the rElay and rOver start out from  

    0 0 ,  0O OO O r  and             0 ( 0 cos 0 ,  0 sin 0 )O E EE E r r  . 

Using the position of E at t=0,  0 ,OE E  and the optimal control of E at time t=0,  

 * 0 , we obtain  1E E T
 
as shown in Fig. 9. Likewise, using the position of O at 

t=0,  0 ,OO O  and the optimal control of O at time t=0,  * 0 ,  we obtain 

 1 ,O O T  as shown in Fig. 9. Having obtained  1 ,E E T  construct the line 1BE  

and use the rElay's optimal control  * T   to obtain  2 2 .E E T  Similarly, having 

obtained  1 ,O O T  construct the line 1BO  and use the rOver's optimal control 

 * T   to obtain  2 2 .O O T  

This process terminates at time N, where max .N
T





 One thus obtains the trajectories 

    ,   ,k E EE x k T y k T   and     ,   ,  0, , .k O OO x k T y k T k N     

We want these trajectories to be presented in an (x, y) frame where the x-axis is aligned 

with the segment .NBO  

Having obtained 
NO  namely,  ,  ,

N NO Ox y  calculate the angle tan ,N

N

O

O

y
A

x


 
 
 
 

  

Note :  2 2 1
N NO O Ox y r N    

To get the rElay and rOver's trajectories in the new (x, y) frame, rotate the rElay and 

rOver trajectories   degrees, namely 
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IV.   Analysis and Results 

IV.1.   Optimal Trajectories of Rover and Relay for different speed ratios ,   and   

 angle of approach of “sweet spot”  . 

The cases of a speed ratio 0.5   and angle of approach   is illustrated in Fig. 

10, for different terminal rOver distances from the base. 
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Figure 10: Optimal trajectories of Rover and Relay for 10 ,  =0.5, 1,  2, 3
TOr    
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Figure 11: Optimal trajectories of Rover and Relay for 

10 ,  0.5,  1, 1.5,  1
TOr     

Figs. 10 and 11 show that the trajectories don‘t scale linearly as 
TOr  

and   vary. 
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Figure 12: Optimal trajectories of Rover and Relay as   changes 
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Figure 13: Optimal trajectories of Rover and Relay for 0.5,  0    

When 0 ,   the rElay approaches the ―sweet spot‖ at an angle 0   during the 

game. The rElay‘s displacement is twice of the rOver‘s because of the speed ratio 
1

.
2
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Figure 14: Time history of the States, Costates and Controls. 0.5,  0    
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Figure 15: Optimal trajectories of Rover and Relay. 0.5,  30 , 1
TOr     

Unlike the case 0  , when 30   the rOver and rElay don‘t move along a 

straight line. However, even though they didn‘t stay on the 0   line, eventually they 

end up s.t. 0  . The broken line shows the end position at 
max , where the three points 

B, E, O are collinear. 
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Figure 16: Time history of the States, Costates and Controls. 0.5,  30 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 180 30 150     
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Figure 17: Optimal trajectories of Rover and Relay. 0.5,  120 ,  1
TOr     

When 120   the rOver and rElay start the game at a non zero   angle. In other 

words, initially the base, rOver and rElay are not colinear. The optimal trajectory 

―terminates‖ on the boundary of the state space s.t.       max max max2 cos .E Or r      
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Figure 18: Time history of the States, Costates and Controls. 

0.5,  120 ,  1
TOr   

 

At the end point the rElay‘s control is 
*(0) 180 120 60     
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Figure 19: Optimal trajectories of Rover and Relay 1,  0 ,  1
TOr     

Unlike in the previous cases, when 1 2  , the rElay and rOver start and end 

the game at 0,   irrespective of  . 
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Figure 17: Time history of the States, Costates and Controls. 1,  0 ,  1
TOr     
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Figure 21: Optimal trajectories of Rover and Relay. 2,  180 ,  1
TOr     

The rElay and rOver should start and end on a line since 180 .   In other words, 

they maintain 0.   However, as seen in Fig. 21, the simulation didn‘t show the result 

we expected. This is because of a small numerical error. Without the error, the rOver and 

rElay each will start the game at 0.5 and 0.75. 
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Figure 18: Time history of the States, Costates and Controls. 2,  180 ,  1
TOr     

  



54 

IV.2.   Optimal Trajectories of Rover and Relay for different ,  ,  
T TE O Tr r   
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Figure 19: Optimal Trajectory of Relay When 
1 3

,  , 0,  20
4 4T TE O Tr r       
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Figure 20: Optimal Trajectories of Rover and Relay When 

1
,  1,  1,  1 ,  2 ,  20 , 30 , 40

4T TE O Tr r       
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Figure 21: Optimal Trajectories of Rover and Relay When 

3
,  1, 1,  1 ,  2 ,  20 , 30 , 40

4T TE O Tr r       
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Figure 22: Optimal Trajectories of Rover and Relay When

 

1 3
,  , 1,  20

4 4T TE O Tr r       

Fig. 19 shows the case when the rElay doesn‘t have enough time to reach to the 

mid- point. This is the optimal control case when the rOver is stationary. Therefore the 

rElay moves straight toward the mid-point, however unlike in our previous result, it stops 

moving at  
1

.
4TEr   Whereas, the rOver is moving and the rElay is tracking its optimal 

position continuously in fig. 22. In both cases the rElay was not able to reach its optimal 

position but it‘s following the guidance of the optimal control law.  
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From these results now we know we can check if the rElay is optimally 

positioned. And if it is, even the rElay didn‘t arrive its optimal point we are able to 

calculate the estimated location or time it takes until the rElay will reach this position. 

Moreover, if we know the final position of the rOver and the time we are given, even if 

the rElay was following the optimal course, we can find  the final optimal point of the 

rElay. Therefore we can control the rElay directly to the intended location. 

IV.3.   Comparison of the End Game Control Law and Optimal Control Law 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

20

40

60

80

100

120

140

160

180

tau

D
e
g

 

Figure 23: Comparison of the End Game Control Law and Optimal Control Law 

0.5,  1, 1,  =0
T TE Or r      
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Figure 24: Comparison of the End Game Control Law and Optimal Control Law 
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Figure 25: Comparison of the End Game Control Law and Optimal Control Law 

0.5,  1, 1,  =60
T TE Or r      
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Figure 26: Comparison of the End Game Control Law and Optimal Control Law 
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Figure 27: Comparison of the End Game Control Law and Optimal Control Law 

0.5,  1, 1,  =120
T TE Or r      
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Figure 28: Comparison of the End Game Control Law and Optimal Control Law 

0.5,  1, 1,  =150
T TE Or r      
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Figure 29: Comparison of the End Game Control Law and Optimal Control Law 

0.5,  1, 1,  =180
T TE Or r      
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Figure 30: Comparison of the End Game Control Law and Optimal Relay Control 

Law 0.5,  1, 0,  =90
T TE Or r      

As we see from Figs. 23-30, the control of the rElay using the optimal control law 

and the end game control law look very similar. However, the rOver‘s control using the 

end game control law is quite different from the optimal control law.   

We are mostly concerned with the control of the rElay. Therefore we can conclude that 

the end game rElay control law is a good sub-optimal control law.  
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  V.   Conclusions and Recommendations 

V.1.   Conclusions  

This thesis develops optimal guidance laws for a rElay MAV in support of 

extended range ISR operations. The algorithm is based upon the solution of a min-max 

optimization problem, namely, the solution of the differential game, which represents a 

worst case scenario. Heuristic rElay guidance strategies are also provided. These are 

derived using a geometry based (sub) optimality principle, and also the solution of the 

one-sided rElay optimal control problem, where the rOver is considered stationary. Both 

methods provided corroborating results which were then employed to gain insight into 

the solution of the differential game. The optimal control and differential game‘s solution 

exhibits interesting behavior: the optimal flow field namely the optimal trajectories will 

converge to the family of end states
1

2
E Or r , where from the optimal trajectory is a 

singular optimal trajectory and    
1

  .
2

E Or t r t t 
 

A parametric investigation was 

conducted and optimal trajectories where generated for speed ratio parameters 0 2.   

When the speed ratio 2,   a ―sweet spot‖ won‘t be reached. Obviously, the most 

interesting case is 1.   

V.2.   Recommendations for Future Research 

The interesting cases of  

1.  Higher-order-dynamics of the rElay MAV must be modeled, including a time 

delay in the control loop. 
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2. Multi player scenarios must be addressed: One rElay MAV, multiple rOver 

MAVs needs to be considered. 

3. Multiple relay MAVs and multiple rOver MAV scenarios must be considered. 

4. Investigate different RF power requirements for Rover and Relay 
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Appendix A – Additional Scenarios  
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Figure A. 1: Optimal trajectories of Rover and Relay. 0.5,  60 ,  1
TOr     
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Figure A. 2: Time history of the States, Costates and Controls. 

0.5,  60 ,  1
TOr   

 

At the end point the rElay‘s control is 
*(0) 180 60 120     
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Figure A. 3: Optimal trajectories of Rover and Relay. 0.5,  90 ,  1
TOr     
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Figure A. 4: Time history of the States, Costates and Controls. 

0.5,  90 ,  1
TOr   

 

At the end point the rElay‘s control is 
*(0) 180 90 90     
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Figure A. 5: Optimal trajectories of Rover and Relay. 0.5,  150 ,  1
TOr     
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Figure A. 6: Time history of the States, Costates and Controls 

0.5,  150 ,  1
TOr     

At the end point the rElay‘s control is 
*(0) 180 150 30     
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Figure A. 7: Optimal trajectories of Rover and Relay. 0.5,  180 ,  1
TOr     
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Figure A. 8: Time history of the States, Costates and Controls 

0.5,  180 ,  1
TOr     
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Figure A. 9: Optimal trajectories of Rover and Relay. 1,  30 ,  1
TOr     
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Figure A. 10: Time history of the States, Costates and Controls. 

1,  30 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 180 30 150     
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Figure A. 11: Optimal trajectories of Rover and Relay. 1,  60 ,  1
TOr     
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Figure A. 12: Time history of the States, Costates and Controls. 

1,  60 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 180 60 120     
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Figure A. 13: Optimal trajectories of Rover and Relay. 1,  90 ,  1
TOr     
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Figure A. 14: Time history of the States, Costates and Controls. 

1,  90 ,  1
TOr     

At the end point the rElay‘s control is 
*(0) 180 90 90     
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Figure A. 15: Optimal trajectories of Rover and Relay. 1,  120 ,  1
TOr     
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Figure A. 16: Time history of the States, Costates and Controls. 

1,  120 ,  1
TOr     

At the end point the rElay‘s control is 
*(0) 180 120 60     
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Figure A. 17: Optimal trajectories of Rover and Relay. 1,  150 ,  1
TOr     
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Figure A. 18: Time history of the States, Costates and Controls. 

1,  150 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 180 150 30     
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Figure A. 19: Optimal trajectories of Rover and Relay. 1,  180 ,  1
TOr     
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Figure A. 20: Time history of the States, Costates and Controls. 

1,  180 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 180 180 0     
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Figure A. 21: Optimal trajectories of Rover and Relay. 1.5,  0 ,  1
TOr     
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Figure A. 22: Time history of the States, Costates and Controls. 

1.5,  0 ,  1
TOr     
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Figure A. 23: Optimal trajectories of Rover and Relay. 1.5,  30 ,  1
TOr     
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Figure A. 24: Time history of the States, Costates and Controls. 

1.5,  30 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 180 30 150     
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Figure A. 25: Optimal trajectories of Rover and Relay. 1.5,  60 ,  1
TOr     
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Figure A. 26: Time history of the States, Costates and Controls. 

1.5,  60 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 120   
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Figure A. 27: Optimal trajectories of Rover and Relay. 1.5,  90 ,  1
TOr     
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Figure A. 28: Time history of the States, Costates and Controls. 

1.5,  90 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 90   
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Figure A. 29: Optimal trajectories of Rover and Relay. 1.5,  120 ,  1
TOr     
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Figure A. 30: Time history of the States, Costates and Controls 

1.5,  120 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 60   
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Figure A. 31: Optimal trajectories of Rover and Relay. 1.5,  150 ,  1
TOr     
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Figure A. 32: Time history of the States, Costates and Controls 

1.5,  150 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 30   
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Figure A. 33: Optimal trajectories of Rover and Relay. 1.5,  180 ,  1
TOr     
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Figure A. 34: Time history of the States, Costates and Controls 

1.5,  180 ,  1
TOr     
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Figure A. 35: Optimal trajectories of Rover and Relay. 1.9,  0 ,  1
TOr     
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Figure A. 36: Time history of the States, Costates and Controls. 

1.9,  0 ,  1
TOr     
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Figure A. 37: Optimal trajectories of Rover and Relay. 1.9,  30 ,  1
TOr     
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Figure A. 38: Time history of the States, Costates and Controls   

1.9,  30 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 150   
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Figure A. 39: Optimal trajectories of Rover and Relay. 1.9,  60 ,  1
TOr     
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Figure A. 40: Time history of States, Costates and Controls. 1.9,  60 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 120   
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Figure A. 41: Optimal trajectories of Rover and Relay. 1.9,  90 ,  1
TOr     

 

 



106 

0 0.1 0.2 0.3 0.4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

tau

r E

0 0.1 0.2 0.3 0.4
0.4

0.5

0.6

0.7

0.8

0.9

1

tau

r O

0 0.1 0.2 0.3 0.4
-0.5

0

0.5

1

1.5

2

2.5

3

tau

th
e
ta

(D
e
g
)

0 0.1 0.2 0.3 0.4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

tau

V
re

0 0.1 0.2 0.3 0.4
0

0.02

0.04

0.06

0.08

0.1

tau

V
ro

0 0.1 0.2 0.3 0.4
0

0.002

0.004

0.006

0.008

0.01

tau

V
th

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

20

40

60

80

100

120

140

160

180

tau

D
e
g

 

Figure A. 42: Time history of the States, Costates and Controls   

1.9,  90 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 90   
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Figure A. 43: Optimal trajectories of Rover and Relay. 1.9,  120 ,  1
TOr     
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Figure A. 44: Time history of the States, Costates and Controls 

1.9,  120 ,  1
TOr     

 At the end point the rElay‘s control is
 

*(0) 60   
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Figure A. 45: Optimal trajectories of Rover and Relay. 1.9,  150 ,  1
TOr     
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Figure A. 46: Time history of the States, Costates and Controls 

1.9,  150 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 30   
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Figure A. 47: Optimal trajectories of Rover and Relay. 1.9,  180 ,  1
TOr     
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Figure A. 48: Time history of the States, Costates and Controls 

1.9,  180 ,  1
TOr     
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Figure A. 49: Optimal trajectories of Rover and Relay. 2,  0 ,  1
TOr     
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Figure A. 50: Time history of the States, Costates and Controls. 

2,  0 ,  1
TOr     
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Figure A. 51: Optimal trajectories of Rover and Relay. 2,  30 ,  1
TOr     
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Figure A. 52: Time history of the States, Costates and Controls. 

2,  30 ,  1
TOr     
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At the end point the rElay‘s control is
 

*(0) 150   
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Figure A. 53: Optimal trajectories of Rover and Relay. 2,  60 ,  1
TOr     
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Figure A. 54: Time history of the States, Costates and Controls.
 

2,  60 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 120   
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Figure A. 55: Optimal trajectories of Rover and Relay. 2,  90 ,  1
TOr     
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Figure A. 56: Time history of the States, Costates and Controls. 

2,  90 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 90   
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Figure A. 57: Optimal trajectories of Rover and Relay. 2,  120 ,  1
TOr     
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Figure A. 58: Time history of the States, Costates and Controls. 

2,  120 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 60   
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Figure A. 59: Optimal trajectories of Rover and Relay. 2,  150 ,  1
TOr     
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Figure A. 60: Time history of the States, Costates and Controls. 

2,  150 ,  1
TOr     

At the end point the rElay‘s control is
 

*(0) 30   
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Appendix B – Geometry 

 

An Elementary Euclidean Geometry Result: 

It is well known that the locus of all points such that the sum of the distances from 

two fixed points is constant, is an ellipse. Thus, the following is of some interest. 

Theorem 1 The Locus of all points such that the sum of the squares of the 

distances from two fixed points is constant, is a circle centered at the midpoint of the 

segment formed by the two fixed points. The radius of this circle is 

2 2R d f   

where the sum of the squares of the distances is 2d
2
 and the distance between the fixed 

points is 2f ; obviously, d f . 

Proof: 

Let the fixed points F1 and F2 be on the x-axis (F1 = (f, 0), F2 = (-f, 0)) as shown 

in the figure below. 
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The sum of the squares of the distances is calculated as 

2 2 2 2 2

2 2 2 2

2 2 2 2

2 ( ) ( )

2 2 2

  

2

d f x y f x y

f x y

x y d f

d

     

  

   

 

This is the equation of a circle centered at the origin, whose radius is 

2 2R d f   

   

This result appeared in [5]. 

Remark: The loci of constant costs, 2d
2
, are concentric circles where the minimum cost 

is found at the midpoint of the line formed by F1 and F2, where d = f. 

Extension: The Locus of all points such that the weighted sum of the squares of the 

distances from two fixed points is constant, is a circle centered on the segment formed by 

x 

y 

f f 

(x, y) 

F1 F2 

Figure B. 1: Schematic of Fixed Points Showing Isocost Circle 
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the two fixed points and is at a distance of (1 – 2)f from this segment‘s midpoint. The 

radius of this circle is 

2 24 (1 )R d f     

where d
2
 is the specified weighted sum of the squares of the distances, the distance 

between the fixed points is 2f; and the weight is ; if  < 0 or  > 1 this is true 0d  , 

and if 0 1  , 2 (1 )d f    . Note: When the weight  = ½, need d f . 

Proof: The weighted sum of the squares of the distances is calculated as 

 

2 2 2 2 2

2 2 2 2 2 2

2 2 2

2 2 2 2 2

( ) (1 ) ( )

2 (1 ) (1 ) 2(1 ) (1 )

2 (1 2 )

(1 2 ) (1 2 )

d f x y f x y

f x fx y f x fx y

f x y fx

x f f y f

 

       



 

            

           

    

      

 

 
2 2 2 2(1 2 ) 4 (1 )x f y d f          
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Appendix C – New Parameterization of Family of “Endpoints” 

 

Each ―sweet spot‖ on the line 
1

2
E Or r  is encapsulated in a small hemispherical 

terminal manifold, as shown in Fig.C.1  

 

Figure C. 1: End States’ Manifold 
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Figure C. 2: State Space 

Consider the family of ―sweet spots‖
1

  ,  , 0
2 T To or r

 
 
 

 which is parameterized by 

,    0
T To or r  . 

As in the optimal control case, we back off from ―sweet spots‖ and the retrograde 

integration of the characteristics equations is initiated from end states  ,  ,
T ToE Tr r   on a 

hemispherical manifold, as shown in Fig.C.1, where 

 T sin    

:   
T TO or r cos cos     
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1
:   

2T TE or r cos sin     

0 2    

0
2


   

The end states associated with the ―sweet spot‖ 
1

,  ,  0
2 T To or r

 
 
 

 reside on a hemispherical 

terminal manifold, as shown in Fig.C.2, where the state space of the differential game is 

illustrated.  

Without loss of generality we confine our attention to 1
Tor  . The family of optimal 

trajectories is thus parameterized by 0
2


   and 0 2   . The retrograde 

integration stops when 2E or r cos . 

The optimal control of the rElay at t=T is given by the solution of the end game 

where the end state is , ,
T ToE Tr r  . It is 

                                 

  

  

*

2 2

*

2 2

cos 2
cos ,

4 4 cos

sin
sin ,

4 4 cos

T T

T T T T
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T T T T
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E O E O T

O T

E O E O T

r r
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r r r r

r
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r r r r














 


 

  









                        (26)
 

provided that the end state is not 
1

2T TE Or r , 0.T 
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Similarly, the optimal control of the rOver at t=T given by the solution of the end 

game is  

                                

  

  

*

2 2

*

2 2

cos
cos ,

2 cos

sin
sin ,

2 cos

T T

T T T T
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T T T T

O E T

E O E O T

E T

E O E O T

r r
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r r r r

r
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                        (27)
 

provided that the end state is not 
T TE Or r , 0T  ; when this is the case, from first 

principles we conclude that the rOver‘s control  * 0.T   

Similar to the solution of the optimal control problem, the ―sweet spot‖ is 

1
,   0.

2T TE o Tr r    This however is problematic, because the respective rElay and rOver 

terminal controls given by eqs. (26) and (27) cannot be computed. Therefore, similar to 

the optimal control problem, one backs off and one considers the terminal states on the 

hemisphere shown in Fig.C.1. 

The end states on the small hemisphere around the ―sweet spot‖ are parameterized 

as follows. 
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The optimal controls at t=T for end states on the hemispherical terminal manifold are 

obtained by inserting eqs. (28) into the terminal control eqs. (26) and (27). 

We calculate 

2 2 2 2 2 2

2 2 2 2

1
4 4 cos 4 cos  sin cos  sin
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sin sin
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Inserting these expressions into the rElay‘s terminal control eqs. (26) yields 
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Next, 
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Inserting these expressions into the rOver‘s terminal control eqs. (27) yields 

Using these controls at time t=T, we obtain 
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We note that
Er   if 0     and 

Er  if  2    , that is,
Er   if 

2

TO

E

r
r   and 

Er  if 

,  0.
2

TO

E

r
r     Hence, the trajectory heads toward the locus of ―sweet spots‖  

s.t. 
Or  . 

The above differential equations allow us to propagate the state to time :T T  

 

 

 

 

2 22 2 2 2
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To propagate the characteristics/co-states to time   ,T T T    we proceed as 

follows. 

Recall 
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Now, on the one hand, 
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and on the other hand, we have calculated the terminal rElay‘s control 
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Similarly, on the one hand 
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and on the other hand, we have calculated the rOver‘s terminal control 
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From this point on, the retrograde integration of the characteristics‘ eqs.(10) is 

undertaken. 
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We show the family of optimal trajectories in an (x,y) plane where  

( ) ( )cos( ( )),    y(t)= ( )sin( ( ))E Ex t r t t r t t  . 
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Appendix D – Suboptimal Solution 

 

Suboptimal solutions are useful in their own right and provide insight into the 

optimal control problem and differential game  

Geometric Approach 

Using a geometric approach provides a suboptimal but easily implementable 

solution of the differential game. This approach is suboptimal because the rElay and the 

rOver each momentarily assume that the other player is stationary when determining their 

optimal control. 

 

Figure D. 1: Schematic of Relay System Showing the Midpoint 

 

The geometry of the engagement forms a triangle with vertices E, B and O 

representing the respective locations of the rElay, Base and rOver (see Figure D.1). Let M 

be the midpoint between the rOver and the Base. Simply rotating the schematic in Figure 
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D.1 provides an equivalent schematic (see Figure D.2) which is similar to the one 

analyzed in Appendix A. 

 

 

If the rOver were stationary, the loci of constant instantaneous costs 

2 2

EO BE y  

for the rElay are concentric circles centered at the midpoint and the midpoint is the rElay 

location which minimizes the cost.[2] The rElay is on the circumference of said circles, 

and the instantaneous cost y is determined by the position of the rElay. This means that 

the gradient vector for minimizing cost is in the radial direction. Therefore, the optimal 

strategy of the rElay is to head toward the midpoint M. 

The optimal control of the rElay is determined using the triangle BEM. The 

distance between E and M is determined using the law of cosines (just as in determining 

the distance between E and O before). The control angle  is then found indirectly by 

finding its supplementary angle using the law of sines. However, due to an inherent 

M 

E 

O B 

Isocost Circle y 

Figure D. 2: Schematic of Relay System Showing Isocost Circle 



140 

ambiguity in the law of sines, the control law is specified for three cases: (1)  is acute, 

(2)  is 90
o
 and (3)  is obtuse. 
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 (29) 

This ambiguity can be bypassed by using an inverse cosine function in place of the 

inverse sine, i.e. 

 1

2 2

cos 2
* cos

4 4 cos

O E

E O E O

r r

r r r r







 
 
   

 (30) 

 * *     (31) 

Note that these rElay strategies are independent of the planning horizon T. 

Once E, B and O are collinear, reducing the rElay velocity eliminates the need for 

excessive control use. However, the rElay might never actually arrive at the midpoint due 

to a short planning horizon T, or the maximizing efforts of a fast rOver. If the rOver used 

a suboptimal control strategy (which would usually be the case in practice), the rElay 

may be able to always arrive at the midpoint and consistently match the motion of the 

midpoint; this is a singular trajectory. 
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An additional one-sided optimization problem is obtained when the rOver‘s point 

of view is taken, namely, the rElay is stationary and the rOver works to maximize the 

cost functional.  

 2 2

0
2 2 cos

T

E O E Or r r r dt  y
 

The rOver will run away from the rElay. 

Numerical Results 

Guided by the suboptimal solution and the solution of the one – sided optimal 

control problem, the differential game is solved using Isaacs method [2], namely, the 

retrograde integration of the characteristics‘ equations (10). In the figures below, the 

spatial results are shown. The following numerical results show the solution of the 

differential game where 
0 0 0 6

0.25,  1,  .5,  1 and .E OT r r         
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Figure D. 3: Relative Spatial Results for 
0 0 0 6

.25,  1,  .5,  1 and     
E O

T r r    

The following numerical results show the solution of the min-max problem where 
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Figure D. 4: Relative Spatial Results for 
0 0 0 3

1,  1,  .5,  1 and     
E O
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